

The MB2.06.0G505030 is a 120W high gain Solid State Broadband High Power Amplifier. This amplifier module utilizes the latest high power RF GaN transistors and also features built in control and monitoring, with protection functions to ensure high availability. This amplifier is suitable for broadband jamming and EMC testing. The amplifier comes with an industry leading warranty.

Features

2GHz-6GHz frequency range
Psat 51dBm type, 50dBm Min.
Power gain 51 dB
50 ohm input/output impedance
Output Power Level Indicator

Solid-state Class AB Broadband design Instantaneous ultra-broadband Suitable for CW, and Pulse Small and lightweight High reliability and ruggedness

ELECTRICAL SPECIFICATIONS(T=25 $^{\circ}$ C,DC Voltage= 30V, Load VSWR \leq 1.2)

Description	Symbol	Min	Тур	Max	Unit
Operating Frequency	BW	2		6	GHz
Output Power CW @ Pin = 0dBm	Psat	100	120		W
Power Gain @ Pin = 0dBm	Gp	50	51		dB
Power Gain Flatness @ Pin = 0dBm	ΔGp		\pm 1.3	\pm 1.5	dB
Input Power for Rated PSAT	Pin	-2	0	2	dBm
Harmonics @ Pin = -5dBm	2 nd /3 rd		-20/-20	-15/-20	dBc
Spurious Signals@ Pin = OdBm	Spur		-70	-65	dBc
Input Return Loss	S11			-10	dB
Third Order Intercept Point					
2-Tone @ 40dBm/Tone, 100kHz Spacing*	IP3		N/A		dBc
Operating Voltage	VDC	28	30	31	V
Quiescent Current @Enable=+3.3V	IDQ		5.5		Α
Current Consumption @Pout= 100~150 W	IDD		13.5	15.5	Α
Switching Time @ 1kHz TTL, Pin = 0dBm	TON/TOFF		2	5	μs

Note*: IP3 or IMD3 data, please contact sales engineer.

MECHANICAL SPECIFICATIONS

Cooling: Heat Sink Needed

Length Width Height: 200*160*25 mm

Weight: 5.5 lbs

RF Connector Input: SMA Female RF Connector Output: Type N Female

ENVIRONMENTAL SPECIFICATIONS

Module Operation Temperature*1	-20	65* ²	$^{\circ}$ C
Storage Temperature Range	-45	85	$^{\circ}\!\mathbb{C}$
Relative-Humidity		95	%
Altitude *2	N	/A	
Vibration/Shock *2	N	I/A	

Notes *1: Module Operation Temperature can be extended to -45~80°C, Contact Sales for update.

Notes *1: Should Supply Adequate Heat Dissipation, Enough Fan and Heat-Sink is necessary during the Temp Test.

Notes *2: Altitude /Vibration are designed with considerations, but without tests and experiments.

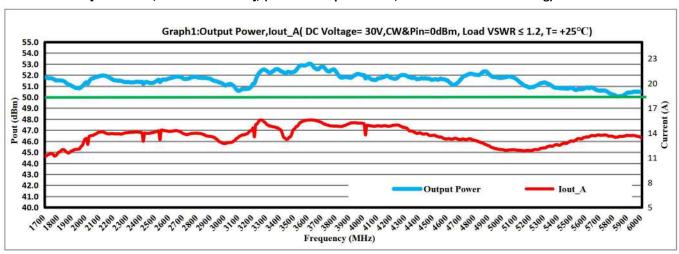
LIMITS

Input RF drive level without damage	Pin≤10	dBm
Load VSWR @ POUT =50W	VSWR≪5:1[Design To Meet]	N/A
Load VSWR @ POUT =80W	VSWR ≤3:1[Design To Meet]	N/A
Thermal Degradation	Module Surface=90 \pm 5 $^{\circ}\mathrm{C}$	$^{\circ}$
	[recovery@<60°C]	

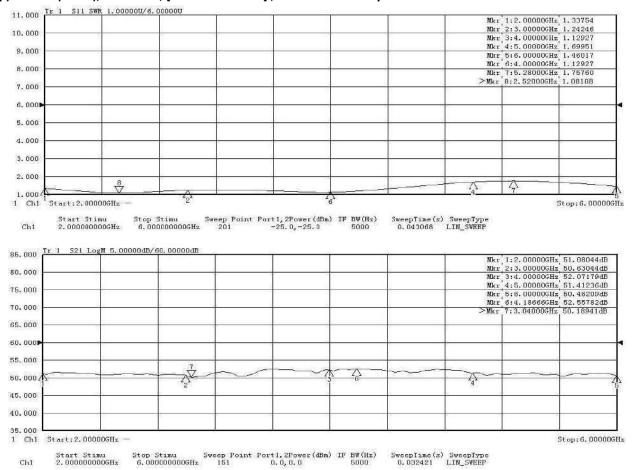
DC INTERFACE CONNECTOR – [Hybrid D-Sub 7-Pin, Male]

Pin #	Description	Specifications		
A1	GND	Ground		
A2	VDD	30VDC		
1	CURRENT SENSE	Analog voltage relative to IDD @ 100mV per Ampere		
2	TEMP SENSE	Analog voltage relative to Module's Temperature @ 10 mV/°C		
3	ENABLE	Amplifier Enable: TTL Logic High (3.3V) (Internally Pulled-Low)		
4	GND	Ground		
5	POWER INDICATOR	Output power ≥47±2dBm: TTL Logic High (3.3V) (Internally Pulled-Low)		

PLOTTED AND OTHER DATA

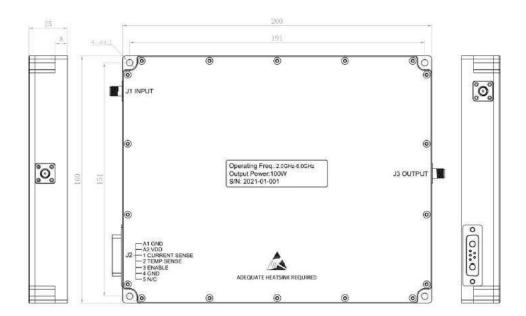

Notes:

- 1. Values at $+25^{\circ}$ C, sea level.
- 2. ESD Sensitive Material, Transport material in Approved ESD bags. Handle only in approved ESD Workstation.
- 3. Heat Sink required for Proper Operation, Unit is cooled by conduction to heat sink.



TYPICAL PERFORMANCE DATA [Volume Shipment product data for Reference]

Pout and Current [Pin=0 dBm, Load VSWR ≤ 1.2], (Normal temp. +25±3°C, Heat-Sink with Fan Cooling)



S11(up) and S21(down), Pin=0dBm, [Load VSWR ≤ 1.2], For Reference Only

OUTLINE DRAWING [mm]

