

The MB2.06.0G474828 is a 50W high gain Solid State Broadband High Power Amplifier. This amplifier module utilizes the latest high power RF GaN transistors to improve the overall efficiency and built-in control and monitoring, over-reflection protection functions to ensure high reliability. This amplifier is suitable for broadband jamming and EMC testing, Phased array systems. The amplifier comes with an industry leading warranty.

Features

2 GHz-6GHz frequency range Psat 47dBm Min, 47.4dBm Typ. Fast Switching time <500nS. High Average Efficiency around 35%. Built-in control, monitoring and protection circuits Solid-state Class AB Broadband design Instantaneous ultra-broadband Suitable for CW, and Pulse Small and light weight Great Gain/Phase Consistency

ELECTRICAL SPECIFICATIONS(T=25 $^{\circ}C$, DC Voltage= 28V, Load VSWR \leq 1.2)

Description	Symbol	Min	Тур	Max	Unit
Operating Frequency	BW	2		6	GHz
Output Power CW@ Psat	Psat	50	55		W
Output P1dB CW	P1dB	10	15		W
Power Gain @ Pin=0 dBm	Gp	47	48		dB
Power Gain Flatness @ Pin=0 dBm	ΔGp		\pm 1.0	±1.5	dB
Input Power for Rated	ΡιΝ	-3	0	3	dBm
Harmonics @ Pout = 30W	2 nd /3 rd		-20/40	-15/20	dBc
Spurious Signals@ Pin=0 dBm	Spur		-60		dBc
Input Return Loss	S11		-15	-12	dB
Third Order Intercept Point					
2-Tone @ 40dBm/Tone, 1MHz Spacing	IP3	50	51		dBm
Operating Voltage	VDC	26	28	30	V
Current Consumption @ Pout=50~60W	IDD		6.5	8.0	А
PAE Efficiency @Psat	Effi	25	35		%
Module to Module Gain Tracking @Pin=0dBm	Δ GT			±1.0	dB
Module to Module Phase Tracking @Pin=0dBm	Δ PT			±15	Deg
Switching Time @ 1kHz TTL, Pin=0 dBm	TON/TOFF			500	ns
MECHANICAL SPECIFICATIONS Cooling					
External: Heat Sink Needed					
Length _* Width _* Height: 160*100*25 mm					
Weight: 2.2 lbs					

Weight: 2.2 Ibs

RF Connector Input: SMA, Female

RF Connector Output: SMA, Female

Elite RF LLC

ENVIRONMENTAL SPECIFICATIONS (Design to Meet)

Module Operation Temperature*1	-20	65* ²	°C
Storage Temperature Range	-45	85	°C
Relative-Humidity		95	%
Altitude * ³	1	N/A	
Vibration/Shock *3	1	N/A	

Notes *1: Module Operation Temperature can be extended to -45^{85} °C, Contact Sales for update.

Notes *2: Should Supply Adequate Heat Dissipation, Enough Fan and Heat-Sink is necessary during the Temp Test.

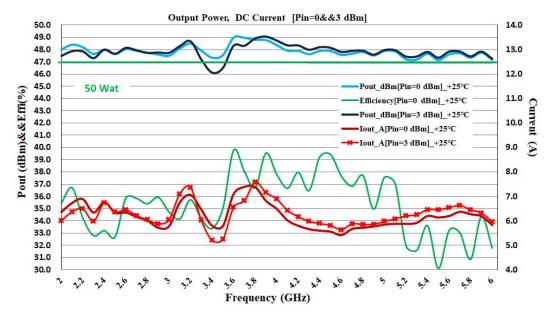
Notes *3: Altitude /Vibration are designed with considerations, but without tests and experiments.

LIMITS

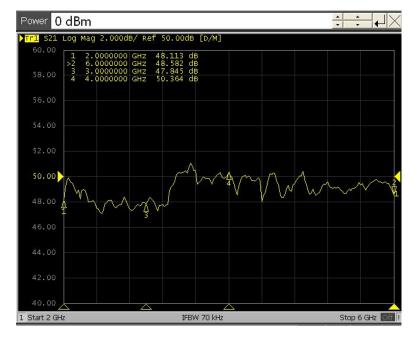
Input RF drive level without damage	$Pin{\leqslant}10(VSWR{\leqslant}2{:}1)$ [Design To Meet]	dBm
Load VSWR @ Pin= -5 dBm	$VSWR{\leqslant}5{:}1[\texttt{Design To Meet}]$	N/A
Load VSWR @ POUT =50~55W	VSWR≪3:1[Design To Meet]	N/A
Over Reflection Power Protection	P_reflect among 20W~40W	N/A
Thermal Degradation	90°C Graceful Degradation(recovery at 60°C)	°C

DC INTERFACE CONNECTOR – [D Sub 9-Pin, Male]

Pin #	Description	Specifications
1~3	VDD	28VDC
4~6	GND	Ground
7	CURRENT SENSOR	Analog voltage relative to IDD @ 100mV per Ampere
8	TEMP SENSOR	Analog voltage relative to Module's Temperature @ 10 mV/°C
9	ENABLE	Amplifier Enable: TTL Logic High (3.3V) (Internally Pulled-Low)


PLOTTED AND OTHER DATA

Notes:


- 1. Values at +25 $^{\circ}$ C, sea level.
- 2. ESD Sensitive Material, Transport material in Approved ESD bags. Handle only in approved ESD Workstation.
- 3. Heat Sink required for Proper Operation, Unit is cooled by conduction to heat sink.

Measurements Report:

TYPICAL PERFORMANCE DATA [Load VSWR ≤ 1.2], (Normal temp. +25±3℃)

Power gain @ Pin=0 dBm: (Ambient temp. +25±3℃, DC Voltage= 28V, Load VSWR ≤ 1.2)

1700 Tower Drive, Hanover Park, IL 60133, USA Call us for customer service/technical support at: 847-592-6350 Email: sales@eliterf.com Web: www.eliterfllc.com

Elite RF LLC

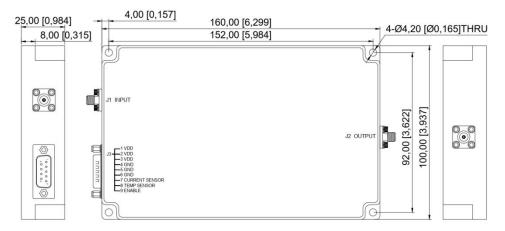

Rev 1: 03/14/2024 Specifications subject to change, consult sales for latest information

Figure Left: Small signal gain @Pin=-30 dBm (Ambient temp. +25±3℃, DC Voltage= 28V, Load VSWR ≤ 1) Figure Right: Input Return Loss@ Pin=-30 dBm (Ambient temp. +25±3℃, DC Voltage= 28V, Load VSWR ≤ 1.2)

OUTLINE DRAWING [mm]

Product View

Elite RF LLC

1700 Tower Drive, Hanover Park, IL 60133, USA Call us for customer service/technical support at: 847-592-6350 Email: sales@eliterf.com Web: www.eliterfllc.com Rev 1: 03/14/2024 Specifications subject to change, consult sales for latest information